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Aperiodic stochastic resonance with correlated noise
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We examine the influence of the noise correlation on aperiodic stochastic resonance. To this end, we
compute the discharge rate of a FitzHugh-Nagumo neuron model in response to a slow sub-threshold aperiodic
input in the presence of additive correlated noise. Aperiodic stochastic resonance is observed for each level of
noise correlation; i.e., there exists a noise amplitude that maximizes the covariance between the input signal
and the model’s discharge rate. Both the maximal covariance and the optimal noise level depend on the noise
correlation. The former remains almost constant for low noise correlations, and steadily decreases at larger
correlations. The latter displays aU-shaped curve when plotted against the noise correlation, indicating that
aperiodic stochastic resonance occurs at lower noise amplitudes for an appropriate range of noise correlation.
We show that the results are consistent with the evaluation of the discharge rate of the model through a
quasistatic assumption. Our results suggest that the interplay of the noise correlation with the time scales of the
neuron model can lead to an improvement of the aperiodic stochastic resonance effect, in that for an appro-
priate level of correlation maximal covariance can be attained with lower noise amplitude.
@S1063-651X~98!08010-5#

PACS number~s!: 87.10.1e, 87.22.Jb, 05.40.1j
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I. INTRODUCTION

In general, the presence of internal or external noise
turbs signal processing and transmission in natural and
ficial systems. However, there are instances where the n
can have a beneficial effect. For example, it has been sh
that noise of appropriate amplitude can linearize the in
output relation in sensory neurons receiving suprathresh
periodic stimulation by reducing nonlinear distortions in t
output~for a review see@1#!, or allow the detection of weak
subthreshold periodic signals through stochastic resona
~SR! @2#. These phenomena have also been analyzed t
retically in order to better determine the conditions und
which they may actually occur in nervous systems@3,4#. The
aforementioned studies focus mainly on the response of
tems to sine-like periodic signals. Of equal importance
been the investigation of the influence of noise on the
sponse of sensory neurons and neuronal models to aper
signals. In this respect, it has been shown that the presen
noise can also enhance the transmission of weak aper
input signals. More precisely, the covariance or the corre
tion between the input signal and the discharge rate of
system are maximized at an intermediate noise level@5#.
This phenomenon referred to as aperiodic stochastic r
nance~ASR! has been observed in experimental preparati
@6# as well as in various neuronal models@7#. From the the-
oretical standpoint, ASR has been studied, under the qu
static assumption, for slowly varying input signals@8#, as
well as through the linear response theory for weak in
signals@9#. The former established a link between ASR a
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noise-induced linearization~e.g.,@1#!, while the latter related
it to conventional SR.

The aforementioned studies on ASR mainly concentr
on the influence of noise amplitude on the response of
system. The purpose of the present work is to assess
importance of another noise characteristic, namely, the n
correlation time, on ASR. This point is motivated by the fa
that the noise used in the previous studies is usually qu
white, i.e., it displays short correlation times. While this a
sumption is justified from a theoretical standpoint, and a
in many practical applications, natural systems are often s
ject to correlated noise, with a wide range of possible cor
lation times.

Similar considerations have been at the basis of the st
of the influence of noise correlation on conventional SR.
weakly periodically modulated bistable systems with
double well potential, SR is well characterized by the fa
that the noise-induced interwell switchings occur mostly
the modulation period~for reviews see@10,11#!. Taking into
account noise correlation introduces a third time scale i
the system, which directly affects the rate of interwell ho
ping, thereby modifying the conditions for SR. It has be
shown in fact that at a given noise amplitude, the interw
switching rate decreases with the noise correlation, so
the more correlated the noise is and the higher the n
amplitudes that are required to reach SR@11#. Moreover,
measures such as spectral amplification and output signa
noise ratio that are maximized at SR display lower peaks
larger noise correlations. Therefore, in such systems, n
correlation reduces the beneficial effects of SR by requir
larger noise amplitudes to attain lower optimal perfo
mances.

In this work, we examine the effect of noise correlatio
time on ASR displayed by the FitzHugh-Nagumo~FHN!
neuron model subject to a weak aperiodic stimulation a
4820 © 1998 The American Physical Society
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PRE 58 4821APERIODIC STOCHASTIC RESONANCE WITH . . .
additive correlated noise. We show that the effect of no
correlation on ASR can differ from the one described in
previous paragraph, in that the system can perform bette
intermediate correlation times than at shorter or longer on

This paper is organized as follows. In Sec. II, we descr
the neuron model. Section III is devoted to the presenta
of the results. Finally a discussion is presented in Sec. I

II. THE NEURON MODEL

In this section, we describe the dynamics of the neu
model and methods used for the computation of the vari
quantities needed to assess the effect of noise correlatio
ASR. We closely follow the methods in@8#. We describe
consecutively the FHN model, the noise and the signal ch
acteristics, the spike detection scheme, and the method
to obtain an estimation of the signal from the model’s out
spike train.

a. The FHN model. The dynamics of the FHN model re
ceiving an input signalS(t), and a noisen(t) is described by
the following system of differential equations:

«
dv
dt

5v~v2a!~12v !2w1A1S~ t !1n~ t !,

~2.1!
dw

dt
5v2w2b,

wherev represents the membrane potential of the model
w is the recovery variable. Throughout our study, we us
the parameters«50.005,a50.5,b50.15, andA50.04, as
in @8#. We integrated system~2.1! using a forward Euler
algorithm with a fixed step-size of 0.001 time units.

b. The noise n(t). We used both white Gaussian and co
related noise in our study. The latter was modeled as
Ornstein-Uhlenbeck~OU! stochastic process satisfying

dn

dt
52l1n1l2j, ~2.2!

where j is white Gaussian noise with autocorrelatio
^j(t)j(t8)&5d(t2t8). The OU process solution of Eq.~2.2!
is a zero-mean Gaussian process with autocorrelation:

^n~ t !n~ t8!&5
l2

2

2l1
exp~2l1ut2t8u!. ~2.3!

In order to investigate the effect of the noise correlation ti
t51/l1, we used the following values:l15500.0,
250.0, 100.0, 50.0, 20.0, 10.0, 5.0, 3.0, 2.0, 1.0 and 0.1.
good approximation to white noise can be produced us
l151/ ~step size!, but for this case we used white Gaussi
noise directly.

In the abscissa of Fig. 3 and Fig. 5~C and D! the noise
correlation timet51/l1 was represented using a logarithm
transformation as the ‘‘level of correlation of the noise’’CL

CL532 log10~l1!. ~2.4!

This transformation givesCL50 for a noise withl51000
~i.e., white noise when using an integration step size of 0.
time unit!, and the value ofCL increases with the increase
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the correlation timet. Thus,CL behaves as an appropria
measure of the level of correlation of the noise.

The standard deviation of the noisen(t), denoted bys, is
given by s5l2 /A2l1, and depends on bothl1 and l2.
Therefore, when changing the correlation time of the no
t51/l1, the value ofl2 was adjusted accordingly to pre
serve the same value fors. We checked that the shapes
the histograms of the noise obtained in this way were
same for the different correlation times.

c. The signal S(t). The signal, denotedS(t), was pro-
duced by passing the output of Eq.~2.2! ~with l150.05 and
l250.05! through a time-unit area Hanning window filte
with 10 time units width. The standard deviation ofS(t) was
set to 0.03, by multiplying the values of the time series by
appropriate factor.S(t) has zero mean, lasts 250 time uni
and is subthreshold, in the sense that it does not evoke
discharges in the absence of noise. Figure 1 shows the
course of the signal. The correlation time of this signal, i.
26.382 time units, is considerably larger than any relev
time scale of the dynamical system such as, for example,
duration of a spike (.0.3 time unit!.

d. Spike detection scheme.The value ofv(t) reached at
the peak of the spikes ranged from 1.0 to 1.1. A spike w
detected whenv(t) exceeded a detection threshold set at 0
Furthermore, each spike detection was followed by a d
period of 0.4 time units during which further upward cros
ings of the detection threshold were not considered as
discharges@8#.

e. Estimation of S(t) from the spike train. A pulse of unit
amplitude was assigned to each spike. In order to estim
the discharge rateR(t) of the model, the pulse train wa
convolved with a three time unit half-width Hanning win
dow.

Two measures were then used to evaluate the input-ou
fidelity of the model. These were the covariance (C0) and
~normalized! correlation (C1) betweenS(t) and R(t) and
were calculated according to@12#:

C05@S~ t !2S~ t !#@R~ t !2R~ t !#, ~2.5!

C15
C0

@@S~ t !2S~ t !#2@R~ t !2R~ t !#2#1/2
. ~2.6!

The general procedure and values of the parameters
lows @8#, with the remarkable difference that the amplitu
of the input signal is bigger. This change increases the p
values ofC1 from 0.30 to 0.8, implying that the matching i
shape betweenS(t) andR(t) is better. The peak value ofC0
decreases, because in the computation of the latter qua
the relative size of the signals to be compared is also ta
into account. Furthermore, the use of a signal with lar
amplitude decreases the variability of bothC0 andC1. Thus,
the number of realizations of the model needed to obt
significant differences between the mean values ofC0 or C1
for different levels of noise is drastically reduced.

III. RESULTS

In this section, we first describe how the ASR in the FH
is affected by the noise correlation time, and then through
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FIG. 1. Time series of the aperiodic subthreshold input signalS(t) in the context of the one parameter bifurcation diagram of the F
for the parameters used in the simulations. The one-parameter bifurcation diagram was calculated analytically before the first H
cation and after the second Hopf bifurcation, and using a simulation in between both bifurcation points. The levels ofA corresponding to the
mean, and to the mean6s of the signal are indicated with dotted lines. The dark bar on the abscissa indicates the range ofA where the
system displays focus behavior. Abscissa:A in arbitrary units of current for the one-parameter bifurcation diagram, and time in arbitrary
units for the signal. Ordinate:v in arbitrary voltage units for the one parameter bifurcation diagram andA in arbitrary units of current for
the signal.
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evaluation of the discharge rate of the model under a qu
static assumption, and a study of a simplified model,
provide an explanation for this phenomenon.

A. ASR in the FitzHugh-Nagumo neuron model
with correlated noise

ASR takes place when the output discharge rate of
FHN best reproduces the input signal at some intermed
noise amplitude, with higher and lower noise levels dete
rating the input-output fidelity. ASR is characterized by t
fact that, when plotted against the noise amplitude, the in
output covarianceC0 and normalized correlationC1 are
humpshaped.

Figure 2 showsC1 ~left column! and C0 ~right column!
against the noise amplitude for the model described in
si-
e

e
te
-

t-

e

previous section, for three noise correlation times. Ea
curve displays ASR in that it has a maximum at some o
mal noise amplitudes* . Thus, ASR is also present wit
correlated noise. Nevertheless, the two main features
ASR, that is the optimal noise amplitude that maximizesC1
or C0, and the values of these maxima, show a strong
pendence on the noise correlation time.

The dependence of the optimal noise amplitudes* on the
noise correlation timet is as follows. Figure 2 shows that th
mode of bothC1 andC0 decreases whent is increased up to
some pointt* 50.1 time units~upper and middle rows!, after
which the mode increases with further increase int ~bottom
row!. This can be seen in Fig. 3~a!, which representss*
against the level of correlation of the noiseCL ~2.4!.

The resulting plot isU-shaped@Fig. 3~a!#. The minimum
of the curve represents the level of correlation (CL51.7 to
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PRE 58 4823APERIODIC STOCHASTIC RESONANCE WITH . . .
FIG. 2. The left column shows the ensemble averaged values ofC1 6 standard deviation for white noise~a!, noise with correlation time
t50.1 ~b!, and noise with correlation timet510.0~c!, plotted against the amplitude of the noises. The right column shows the ensembl
averaged values ofC03106 ~squares! and of the slope of the FHN input-output function~circles! for white noise~d!, noise with correlation
time t50.1 ~e!, and noise with correlation timet510.0 ~f!, plotted against the amplitude of the noises. All the points represent average
of 10 realizations of the model lasting 250 time units each, using a different seed of noise in each realization. Abscissa:s in arbitrary units
of current. Ordinate:C1 ~dimensionless! for the left column;C03106 in current units 3 ~spikes/time units! ~squares! and slope in
spikes/~time units 3 current units! ~circles! for the right column.
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CL52.3, i.e.,ta50.5 to ta50.2 time units! at which less
noise is required to maximizeC0 andC1. We also noted tha
thes* for C0 coincides with thes* for C1 in all cases with
the only exception of the noise with the highest level
correlation (CL54.0,t510.0!. In this case s* (C0)
.s* (C1). The similar behavior ofC0 andC1 ~2.5 and 2.6!
is expected, as the variance of the signalS(t) is constant and
the variance of the estimation of the signalR(t) for s* does
not change in a large extent for different correlations of
noiseCL ~with the exception of the noise with higher level
correlation!. ThusC0 andC1 are roughly proportional.

The dependence of the maximal input-output fidelity
the noise correlation time is somewhat different from that
s* . Figure 2 shows that the maximum value ofC1 andC0
~reached ats* ) is almost at the same level as for white noi
for correlation timet50.1 time units~upper and middle row,
f

e

f

respectively!. For larger correlation times, however, th
maxima decrease~bottom row!. This can be seen in Figs
3~b! and 3~c!, which show the maximal value ofC1 andC0
againstCL . At low noise correlations, the curve displays
plateau, and then it monotonously decreases at larger co
lation times. Interestingly, the value oft* is included in the
plateau of this curve. Thus, the noise withCL52.0, i.e, t
510.0, minimizess* without losing input-output fidelity.

In order to better understand the dependence of ASR
noise correlation, we apply the quasistatic approximation
scribed in@8#.

B. The quasistatic assumption

In the studies of ASR, in general, the input signal is re
tively slow compared with the time scales of the neuron
the neuron model, such as spike and refractory period d
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4824 PRE 58A. CAPURRO, K. PAKDAMAN, T. NOMURA, AND S. SATO
tions. Chialvoet al. @8# took advantage of this, and showe
that, under this condition, the system acts like a static n
linearity. As the signal changes on a slower time scale t
all characteristics times of the neuron, it produces quasis
variations in the parameterA. Thus, the firing rate observe
near a given value of the input signal can be estimated f
the input-output function at the corresponding constant va
of A. They determined the input-output function of this sta
system by computing the discharge rate of the model in
sponse to constant current stimulation. Finally, they v
dated their approximation by showing numerically that t
curve ofC0 against the noise level could be reproduced,

FIG. 3. ~a! Thes* for C1 ~squares!, thes* for C0 ~circles!, and
the s* for the slope of the FHN input-output function~triangles!
are plotted against the level of correlation of the noiseCL . ~b! The
maximum level ofC1 6 standard deviation, reached ats* , is plot-
ted againstCL . ~c! The maximum level ofC03106 6 standard
deviation ~squares! and the maximum slope of the FHN inpu
output function6 standard deviation~circles! reached ats* , are
plotted againstCL . All the points represent averages of 10 realiz
tions of the model lasting 250 time units each, using a different s
of noise in each realization. Abscissa: Level of correlation of
noise,CL ~dimensionless!. Ordinate:s* in units of current for~a!,
C1 at s* ~dimensionless! for ~b!. For 3C, C03106 at s* in
current units3~spikes/time units! ~squares! and slope ats* in
spikes/~time units3current units! ~circles!.
-
n

tic

m
e

-
-

p

to a constant factor, by computing the slope of the me
firing rateR(t) as a function of tonic activationA for various
noise intensities.

Chialvo et al. @8# performed their study with quasi whit
noise. Nevertheless, noise correlation does not significa
alter their results as long as the input signal is slow enou
We confirmed this point by computing numerically the sta
input-output function of the FHN in the presence of corr
lated noise of various intensities.

More precisely, we selected eight levels of constant c
rent ranging from the minimum value to the maximum val
of the signalS(t). For each level ofA we computed the
mean firing rate of the FHN and obtained an input-outp
function for each value ofs. The mean firing rate was cal
culated as~number of spikes!/~simulation time! @13#. The
slope of the input-output function was determined by line
regression. An example of this input-output function
shown in Fig. 4.

The slope was plotted against the noise amplitudes. This
plot matches, up to a constant factor, the plot of covaria
againsts for all the levels of noise correlation tested@Fig. 2
~right column!#. The plot of thes* for the slope of the input
output function versusCL matches the plot ofs* for C0
versusCL @Fig. 3~a!#. Also the plot of the slope ats* versus
CL matches up to a constant factor the plot ofC0 at s*
versusCL @Fig. 3~c!#.

The above results show that the quasistatic assump
holds, and that in order to clarify the effect of noise corre
tion time on the ASR, we need only to compute the d
charge rate of the model in response to constant input
rents. Therefore, in the following, we examine how t
discharge rate of a simplified version of the FHN varies w
the noise correlation time, in order to determine the fact
that are essential in obtaining a similar response.

C. Discharge rate of a simplified neuron model
with correlated noise

In this section, we describe the influence of correla
noise on the response of a simplified FHN~SFHN! model. In
other words, for each level of noise correlationCL , we com-
pute ~i! the noise amplitudes* that maximizes the slope o

-
d

e

FIG. 4. The mean firing rate of the FHN is plotted against t
input currentA ~squares!. The 8 levels ofA range from the mini-
mum to the maximum ofS(t). The linear function fitted to the
points by linear regression is shown with a dashed line. In t
examples50.06 andCL50.0 ~white noise!, the value of the slope
is 9.278 18, and the correlation coefficient between the squares
the dashed line is 0.981 78. Abscissa:A in arbitrary units of cur-
rent. Ordinate: Mean firing rate in spikes/~time unit!.



ve

o

N
od
re
a

th
tio
is
h

e

i

f

e
lu

nt
hi

h
h

i
N
sh

s
po
-

s
ike

e
le

Eq
pl
r

or
hi

t-

t

f
g a
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the constant current intensity versus mean firing rate cur
and~ii ! the corresponding maximal slope values* . Next we
monitor how these two quantities change with the noise c
relation time.

The motivating reason for the construction of the SFH
was the schematic separation of the dynamics of the m
into subthreshold and suprathreshold regimes. The latter
resents the action potential whose shape and duration
little affected by the inputs. Therefore, we assumed that
response of the model was mainly shaped by the interac
between its intrinsic subthreshold dynamics and the no
As a first approximation, we used the linearized FHN for t
description of the subthreshold dynamics.

More precisely, the SFHN comprises two variables d
noted byv8 andw8, and a constant threshold, denoted byu.
While v8 is below threshold, the time course of the system
determined by the linearized FHN:

«
dv8

dt
5a~A!v82w81n~ t !,

~3.1!
dw8

dt
5v82w8,

where a(A)523v* 212(a11)v* 2a, where v* is the
equilibrium potential for Eq.~2.1! for a constant current o
intensityA. The noisen is determined by Eq.~2.2!.

Concerning the threshold, it was necessary to defin
level such that if the voltage of the SFHN exceeds its va
the model is considered to fire. We took the differencevH
2v* , wherevH is the equilibrium potential at the consta
current intensity at which the Hopf bifurcation occurs, as t
threshold valueu ~see Fig. 1!. We calledvH2v* the thresh-
old of the SFHN, in the sense that it plays the role of t
threshold in the FHN, although in the latter system t
threshold is not precisely defined as a single value.

In this way, for each value of the parameterA represent-
ing the constant current intensity, the subthreshold dynam
of the simplified model closely follow those of the FH
linearized at the equilibrium point. Furthermore, the thre
old is adjusted to take into account that increasingA lowers
the firing threshold in the FHN.

Wheneverv8 exceeds the thresholdu, both variablesv8
andw8 are reset instantaneously to zero. This event con
tutes the definition of the spike; the shape of the action
tential itself is not explicitly included in this model. Follow
ing the post-discharge reset, the two variablesv8 and w8
remain at the origin during an absolute refractory period la
ing 0.4 time units, which is close to the duration of the sp
in the FHN driven by noise~0.25–0.4 time units!, and cor-
responds also to the dead time in the spike detection sch
used for the FHN. At the end of this period, the two variab
evolve again according to Eq.~3.1!.

In the numerical computations of the discharge rate of
~3.1!, we used exactly the same 8 values of the input am
tudeA, and the same noise sequences that were used fo
FHN. For the 6 larger values ofA, the linearized FHN be-
haves as a focus; i.e., the eigenvalues of Eq.~3.1! are com-
plex numbers. For the remaining two lower values ofA the
system behaves as a node. The region of focus behavi
indicated with a dark bar over the abscissa of Fig. 1. T
s,
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FIG. 5. ~a! The slope of the FHN input-output function is plo
ted against the noise amplitudes, for white noise~squares!, noise
with correlation timet50.1 ~circles!, and noise with correlation
time t510.0 ~triangles!. ~b! The slope of the SFHN input-outpu
function is plotted against the noise amplitudes, for white noise
~squares!, noise with correlation timet50.1 ~circles!, and noise
with correlation timet510.0 ~triangles!. ~c! The s* for the slope
of the FHN input-output function~squares! and thes* for the slope
of the SFHN input-output function~circles! are plotted against the
level of correlation of the noiseCL . ~d! The slope of the FHN
input-output function6 standard deviation reached ats* ~squares!
and the slope of the SFHN input-output function reached ats*
~circles! are plotted againstCL . All the points represent averages o
10 realizations of the model lasting 250 time units each, usin
different seed of noise in each realization. Abscissa:s in arbitrary
current units for~a! and ~b!; level of correlation of the noise,CL

~dimensionless! for ~c! and ~d!. Ordinate: Slope in spikes/~time
units!3~current units! for ~a! and~b!; s* in current units for~c! and
slope ats* in spikes/~time units3current units! for ~d!.
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corresponds to a value ofa(A).20.146 421 and to a value
of the voltage variablev.0.136 489.

The slope of the input-output function versuss for three
different levels of noise correlation is shown in Fig. 5. T
curves of the FHN system@Fig. 5~a!# and the SFHN@Fig.
5~b!# display a similar behavior.s* , the noise level that
maximizes the slope, decreases witht up toC* , after which
s* increases again. This phenomenon produces aU-shaped
curve in the plot ofs* versusCL . The minimum of the
curve is the same for both the FHN and the SFHN. In
latter, theU is ‘‘flatter’’ than in the former, i.e., the edges o
the U have lower ordinates@Fig. 5~c!#. The maximum slope
(s* , the slope ats* ) reaches larger values than in the FH
and it decreases moderately ast is increased. This trend to
decrease is clearer than in the FHN, where there is a pla
that extends untilCL52.0 @Fig. 5~d!#.

These simulations show that the performance of
SFHN is quite similar to that of the FHN, although the d
tails are different. This implies that the properties of the FH
in the presence of noise can be studied using the SFHN
plausible approximation. The behavior of the SFHN can
more easily investigated theoretically because it is a lin
system as far as the subthreshold activity is concerned.

IV. DISCUSSION

The use of noise with a certain degree of correlation
proves ASR performance in the sense that a lower n
amplitude is required to optimize the input-output fidelit
This effect is explained by the quasistatic assumption;
noise with a certain level of correlation is more efficient th
white noise to linearize the input-output function of th
FHN. This result is in contrast with simulations done with
weakly periodically modulated bistable system with
double-well potential, where the correlation of the noise h
been shown to impair SR@11#.

The question of why a certain level of correlation in t
added noise can improve ASR is then translated to why
correlated noise is more effective to linearize the inp
output function of the neuron. In this work we provide som
preliminary insights to the answer of this question. The k
result is that the SFHN system can reproduce qualitativ
the evolution of (s* ) for different levels of correlation of the
noise. This means that an interaction between the noise
relation time and the intrinsic subthreshold dynamics of
model @14# driven in the focus regime, which is similar fo
FHN and SFHN, may be at the basis of this phenomen
Most of the values of the signalS(t) are in the range where
the system behaves as a focus. In the focus the memb
responds to a transient perturbation with a damped osc
tion of v, and displays the property of resonance, i.e., so
particular frequency contained in the input noise can be m
amplified than others in the outputv. This led us to the
hypothesis that the noise with a value ofl1 that better fits the
resonance frequency of the system should be the more e
tive to linearize the input-output function, because it can
more amplified due to the resonance effect. Thus, thes* that
maximizes the slope of the constant current intensity ver
mean firing rate should be smaller.
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Interestingly, such a phenomenon whereby the interp
of noise correlation time and deterministic resonance in
ences the behavior of the system has been reported in
case of a discrete-time dynamical system near a Hopf bi
cation in the presence of correlated multiplicative noise@15#.
This study shows that the output coherence is optimized
the noise correlation time for which the frequency is as sim
lar as possible to the deterministic frequency. Neverthel
in the conditions of the present simulations, other factors t
add complexity to this simple interpretation must be tak
into account. The two lowest values ofA were in the node
regime. Moreover, the lower values ofA within the focus
produce only a very little resonance effect. The damp
factor z of the linear system derived from Eq.~3.1! was
between 0 and 1/A2. This condition was satisfied only in th
case of the three larger values ofA. Thus, roughly speaking
only the upper half of the signal produced a resonance eff
In this situation, the changes in the ‘‘effective resonance f
quency’’ of the system and its relation with the input-outp
fidelity are nontrivial. For the above-mentioned three larg
values ofA, the resonance frequency of our model rang
from 1.6 to 2.25. The more effective noise in the simulatio
was in the range froml1520 to l155. Further studies,
including simulations with a systematic change of the para
eter of the model that determine the resonance freque
i.e., t, as well as simulations using other neuron models,
necessary to clarify this point. We will address these iss
in future studies.

In conclusion, we examined the response of the FHN t
slow subthreshold aperiodic signal in the presence of no
We showed that for each noise correlation, the system
played ASR, in the sense that there was an intermed
noise amplitude that maximized the input-output covarian
or the input-output correlation. Then, we investigated
influence of the noise correlation time on the ASR charac
istics, that is, the optimal noise amplitudes* leading to
ASR, and the corresponding level of the covarianceC0* . We
observed thats* first decreased with the noise correlatio
time, before increasing again, whileC0* remained almost
constant at first, before decaying. These results suggest
in this system, noise of appropriate correlation time can
hance ASR. At this correlation level the effect of lineariz
tion of the input-output function of the FHN is more effe
tive, and for this reason the required noise levels* is
decreased. This increased efficiency in the linearization
the input-output function may be related to resonance p
nomena between the intrinsic subthreshold dynamics of
model and the noise, but further studies are needed to
this hypothesis.
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