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Aperiodic stochastic resonance with correlated noise
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We examine the influence of the noise correlation on aperiodic stochastic resonance. To this end, we
compute the discharge rate of a FitzHugh-Nagumo neuron model in response to a slow sub-threshold aperiodic
input in the presence of additive correlated noise. Aperiodic stochastic resonance is observed for each level of
noise correlation; i.e., there exists a noise amplitude that maximizes the covariance between the input signal
and the model’s discharge rate. Both the maximal covariance and the optimal noise level depend on the noise
correlation. The former remains almost constant for low noise correlations, and steadily decreases at larger
correlations. The latter displayslshaped curve when plotted against the noise correlation, indicating that
aperiodic stochastic resonance occurs at lower noise amplitudes for an appropriate range of noise correlation.
We show that the results are consistent with the evaluation of the discharge rate of the model through a
guasistatic assumption. Our results suggest that the interplay of the noise correlation with the time scales of the
neuron model can lead to an improvement of the aperiodic stochastic resonance effect, in that for an appro-
priate level of correlation maximal covariance can be attained with lower noise amplitude.
[S1063-651%98)08010-5

PACS numbeps): 87.10+e, 87.22.Jb, 05.46;

I. INTRODUCTION noise-induced linearizatiofe.g.,[1]), while the latter related
it to conventional SR.
In general, the presence of internal or external noise dis- The aforementioned studies on ASR mainly concentrate
turbs signal processing and transmission in natural and artR" the influence of noise amplitude on the response of the
ficial systems. However, there are instances where the noisyStem. The purpose of the present work is to assess the

can have a beneficial effect. For example, it has been showf'PCrtance of another noise characteristic, namely, the noise
. . . ” ) . orrelation time, on ASR. This point is motivated by the fact
that noise of appropriate amplitude can linearize the inpu

.t - at the noise used in the previous studies is usually quasi-
output relation in sensory neurons receiving suprathresholgyite ' e it displays short correlation times. While this as-

periodic stimulation by reducing nonlinear distortions in thesymption is justified from a theoretical standpoint, and also

output(for a review se¢1]), or allow the detection of weak in many practical applications, natural systems are often sub-
subthreshold periodic signals through stochastic resonangect to correlated noise, with a wide range of possible corre-
(SR) [2]. These phenomena have also been analyzed thetation times.

retically in order to better determine the conditions under Similar considerations have been at the basis of the study
which they may actually occur in nervous systg®gl]. The  of the influence of noise correlation on conventional SR. In

aforementioned studies focus mainly on the response of sy¥/€akly periodically modulated bistable systems with a

tems to sine-like periodic signals. Of equal importance hagouble well potential, SR is well characterized by the fact

been the investigation of the influence of noise on the re;hat the noise-induced interwell switchings occur mostly at

sponse of sensory neurons and neuronal models to aperioc}he modulation periodfor reviews se¢10,11)). Taking into

; . . é%count noise correlation introduces a third time scale into
signals. In this respect, it has been shown that the presence Qf system, which directly affects the rate of interwell hop-
noise can also enhance the transmission of weak aperiodmng' therel’Jy modifying the conditions for SR. It has been
input signals. More precisely, the covariance or the correlagp oy in fact that at a given noise amplitude, the interwell
tion between the input signal and the discharge rate of thgyitching rate decreases with the noise correlation, so that
system are maximized at an intermediate noise 1€8&l  the more correlated the noise is and the higher the noise
This phenomenon referred to as aperiodic stochastic res@mplitudes that are required to reach §R]. Moreover,
nance(ASR) has been observed in experimental preparationgneasures such as spectral amplification and output signal-to-
[6] as well as in various neuronal mod¢l. From the the- noise ratio that are maximized at SR display lower peaks for
oretical standpoint, ASR has been studied, under the quadarger noise correlations. Therefore, in such systems, noise
static assumption, for slowly varying input signdBl], as correlation reduces the beneficial effects of SR by requiring
well as through the linear response theory for weak inputarger noise amplitudes to attain lower optimal perfor-
signals[9]. The former established a link between ASR andmances.

In this work, we examine the effect of noise correlation
time on ASR displayed by the FitzHugh-NaguniBHN)

*Electronic address: alberto@bpe.es.osaka-u.ac.jp neuron model subject to a weak aperiodic stimulation and
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additive correlated noise. We show that the effect of noisehe correlation timer. Thus,C, behaves as an appropriate

correlation on ASR can differ from the one described in themeasure of the level of correlation of the noise.

previous paragraph, in that the system can perform better at The standard deviation of the nois&), denoted by, is

intermediate correlation times than at shorter or longer onegjiven by o=\,/\2\;, and depends on both; and \,.
This paper is organized as follows. In Sec. I, we describeTherefore, when changing the correlation time of the noise

the neuron model. Section Ill is devoted to the presentation=1/x,, the value of\, was adjusted accordingly to pre-

of the results. Finally a discussion is presented in Sec. IV. serve the same value far. We checked that the shapes of

the histograms of the noise obtained in this way were the
Il. THE NEURON MODEL same for the different correlation times.
c. The signal &). The signal, denote&(t), was pro-

In this section, we describe the dynamics of the neuro ina th n 2) (With A<=
model and methods used for the computation of the variourguieodo%/ ?hzars(;sdgﬁ ;etircr)\l:-rijur:ito ase%. &;Vxﬁinglwiafswagﬁer

guantities needed to assess the effect of noise correlation th 10 time units width. The standard deviationSft) was

ASR. We closely follow the methods if8]. We describe Lo : :
: ; ; set to 0.03, by multiplying the values of the time series by an
consecutively the FHN model, the noise and the signal char: propriate factorS(t) has zero mean, lasts 250 time units,

D : . a
acteristics, the §p|k(_a detection _scheme, and the method usgﬁd is subthreshold, in the sense that it does not evoke any
to obtain an estimation of the signal from the model’s OUIpUtdischarges in the absence of noise. Figure 1 shows the time

spike train. . course of the signal. The correlation time of this signal, i.e.,
a. The F.HN mpdeIThe dynamlcs_ of thg FHN mpdel re- 26.382 time units, is considerably larger than any relevant
ceiving an input S|gna$(t)z and a_n0|se1(t) IS d'escrlbed by time scale of the dynamical system such as, for example, the
the following system of differential equations: duration of a spike £0.3 time unit.
v d. Spike detection schemEhe value ofv(t) reached at
8a=v(v—a)(1—v)—W+A+ S(t)+n(t), the peak of the spikes ranged from 1.0 to 1.1. A spike was
detected when (t) exceeded a detection threshold set at 0.8.
dw (2.1) Furthermore, each spike detection was followed by a dead
—=p—w—b, period of 0.4 time units during which further upward cross-
dt ings of the detection threshold were not considered as new
schargeg8].

e. Estimation of &) from the spike trainA pulse of unit
mplitude was assigned to each spike. In order to estimate
the discharge rat®(t) of the model, the pulse train was
convolved with a three time unit half-width Hanning win-

wherev represents the membrane potential of the model ang !
w is the recovery variable. Throughout our study, we use%
the parameters =0.005,a=0.5,b=0.15, andA=0.04, as
in [8]. We integrated systen2.1) using a forward Euler
algorithm with a fixed step-size of 0.001 time units.

b. The noise (t). We used both white Gaussian and cor-
related noise in our study. The latter was modeled as ap
Ornstein-UhlenbeckOU) stochastic process satisfying

Two measures were then used to evaluate the input-output
elity of the model. These were the covarianég,) and
(normalized correlation C;) betweenS(t) and R(t) and
were calculated according {a.2]:

dn
a:_)\ln‘i‘)\zg, (22)
Co=[S(t) = S(H][R() —R(V)], (2.9
where ¢ is white Gaussian noise with autocorrelation
(&(t)é(t"))=68(t—t"). The OU process solution of E(R.2) Co
is a zero-mean Gaussian process with autocorrelation: C,= — — (2.9
, [[S(t) =S TR —R(1)]7]
(n(t)n(t’))= Z—)fleXF(—)\ﬂt—t’D- 2.3 The general procedure and values of the parameters fol-

lows [8], with the remarkable difference that the amplitude
In order to investigate the effect of the noise correlation timeof the input signal is bigger. This change increases the peak
r=1/\,, we used the following values:\,=500.0, Values ofC, from 0.30 to 0.8, implying that the matching in
250.0, 100.0, 50.0,20.0,10.0,5.0,3.0,2.0,1.0 and 0.1. A&hape betwee§(t) andR(t) is better. The peak value &,
good approximation to Wh|te noise can be produced usingecreases, because n the Computat|0n Of the Iatter quant|ty
noise directly. into account. Furthermore, the use of a signal with larger
In the abscissa of Fig. 3 and Fig.(6 andD) the noise ~ amplitude decreases the variability of béj andC,. Thus,

correlation timer= 1/\ ; was represented using a logarithmic theé number of realizations of the model needed to obtain
transformation as the “level of correlation of the noisg;  Significant differences between the mean value€gbr C,
for different levels of noise is drastically reduced.
CL: 3_ |Oglo()\1). (24)
. . . . . Ill. RESULTS

This transformation give€, =0 for a noise withx =1000
(i.e., white noise when using an integration step size of 0.001 In this section, we first describe how the ASR in the FHN
time uni, and the value o€, increases with the increase in is affected by the noise correlation time, and then through an
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FIG. 1. Time series of the aperiodic subthreshold input si§gl in the context of the one parameter bifurcation diagram of the FHN
for the parameters used in the simulations. The one-parameter bifurcation diagram was calculated analytically before the first Hopf bifur-
cation and after the second Hopf bifurcation, and using a simulation in between both bifurcation points. The Idvasreéponding to the
mean, and to the meah o of the signal are indicated with dotted lines. The dark bar on the abscissa indicates the rang@ere the
system displays focus behavior. Abscisaan arbitrary units of current for the one-parameter bifurcation diagram, and time in arbitrary time
units for the signal. Ordinates in arbitrary voltage units for the one parameter bifurcation diagramAairdarbitrary units of current for
the signal.

evaluation of the discharge rate of the model under a quasprevious section, for three noise correlation times. Each
static assumption, and a study of a simplified model, wecurve displays ASR in that it has a maximum at some opti-

provide an explanation for this phenomenon. mal noise amplitudes™. Thus, ASR is also present with
correlated noise. Nevertheless, the two main features of
A. ASR in the FitzHugh-Nagumo neuron model ASR, that is the optimal noise amplitude that maximigZas
with correlated noise or Cy, and the values of these maxima, show a strong de-

pendence on the noise correlation time.

ASR takes place when the output discharge rate of the The dependence of the optimal noise amplitadteon the
FHN best reproduces the input signal at some intermediatgoise correlation time is as follows. Figure 2 shows that the
noise amplitude, with higher and lower noise levels deteriomode of bothC, andC, decreases whenis increased up to
rating the input-output fidelity. ASR is characterized by thesome point* =0.1 time units(upper and middle rowsafter
fact that, when plotted against the noise amplitude, the inputwhich the mode increases with further increase ifpottom
output covarianceCy, and normalized correlatiol©; are  row). This can be seen in Fig.(&, which represents*
humpshaped. against the level of correlation of the noi€g (2.4).

Figure 2 showsC; (left column and C, (right column The resulting plot idJ-shapedFig. 3@]. The minimum
against the noise amplitude for the model described in thef the curve represents the level of correlatid® 1.7 to
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FIG. 2. The left column shows the ensemble averaged valu€s af standard deviation for white noige), noise with correlation time
7=0.1(b), and noise with correlation time=10.0(c), plotted against the amplitude of the noise The right column shows the ensemble-
averaged values dE,x 10° (squaresand of the slope of the FHN input-output functitaircles for white noise(d), noise with correlation
time 7=0.1 (e), and noise with correlation time=10.0 (f), plotted against the amplitude of the noise All the points represent averages
of 10 realizations of the model lasting 250 time units each, using a different seed of noise in each realization. Abstiagatrary units
of current. OrdinateC; (dimensionlessfor the left column;Cyx 1P in current units X (spikes/time units (squares and slope in
spikesftime units X current unit$ (circles for the right column.

C.=23, i.e.,,7,=0.5 to 7,=0.2 time unit$ at which less respectively. For larger correlation times, however, the
noise is required to maximiz8, andC,. We also noted that maxima decreas_ébottom row. This can be seen in Figs.
the o* for C, coincides with ther* for C; in all cases with ~ 3(b) and 3c), which show the maximal value &; andC,

the only exception of the noise with the highest level ofagdainstC, . At low noise correlations, the curve displays a
correlation €, =4.0,7=10.0. In this case o*(Cy) plateau, and then it monotonously decreases at larger corre-

> 0*(C,). The similar behavior o€, andC, (2.5 and 2.5 lation times. Interestingly, the value ef is included in the

is expected, as the variance of the sigB@) is constant and Platéau of this curve. Thus, the noise with =2.0, i.e, 7

; L ; =10.0, minimizeso™ without losing input-output fidelity.
the variance of the estimation of the sigiit) for o* does '
not change in a large extent for different correlations of the In order to better understand the dependence of ASR on

noiseC, (with the exception of the noise with higher level of hoise correlation, we apply the quasistatic approximation de-

correlation). ThusC, andC; are roughly proportional. scribed in[8].
The dependence of the maximal input-output fidelity on

the noise correlation time is somewhat different from that of

o*. Figure 2 shows that the maximum value©®f andC, In the studies of ASR, in general, the input signal is rela-

(reached at*) is almost at the same level as for white noisetively slow compared with the time scales of the neuron or

for correlation timer=0.1 time unitsupper and middle row, the neuron model, such as spike and refractory period dura-

B. The quasistatic assumption
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FIG. 4. The mean firing rate of the FHN is plotted against the
input currentA (squares The 8 levels ofA range from the mini-
mum to the maximum ofS(t). The linear function fitted to the
points by linear regression is shown with a dashed line. In this
exampleo=0.06 andC, = 0.0 (white noise, the value of the slope
is 9.278 18, and the correlation coefficient between the squares and
the dashed line is 0.981 78. Abscisgain arbitrary units of cur-
rent. Ordinate: Mean firing rate in spiké&whe unif.

to a constant factor, by computing the slope of the mean
firing rateR(t) as a function of tonic activatioA for various
noise intensities.

Chialvo et al. [8] performed their study with quasi white
noise. Nevertheless, noise correlation does not significantly
alter their results as long as the input signal is slow enough.
We confirmed this point by computing numerically the static
input-output function of the FHN in the presence of corre-
lated noise of various intensities.

More precisely, we selected eight levels of constant cur-
rent ranging from the minimum value to the maximum value

] of the signalS(t). For each level ofA we computed the
04— . . ; . mean firing rate of the FHN and obtained an input-output

° ! ? ? ! function for each value of. The mean firing rate was cal-
culated as(number of spiked(simulation time [13]. The
slope of the input-output function was determined by linear
regression. An example of this input-output function is
shown in Fig. 4.

Level of correlation of the noise

FIG. 3. (a) Theo™ for C; (squarek thea* for C, (circles, and
the o* for the slope of the FHN input-output functidiriangles
are plotted against the level of correlation of the ndige (b) The
maximum level ofC, + standard deviation, reacheddt, is plot- The slope was plotted against the noise amplitatd&his
ted againstC, . (c) The maximum level ofC,x 10° + standard  plot matches, up to a constant factor, the plot of covariance
deviation (squares and the maximum slope of the FHN input- againsto for all the levels of noise correlation testHeig. 2
output function+ standard deviatioricircles reached atr*, are  (right column]. The plot of thes™ for the slope of the input
plotted againsC, . All the points represent averages of 10 realiza- output function versusC, matches the plot o&* for C,
tions of the model lasting 250 time units each, using a different seegersusC, [Fig. 3(a)]. Also the plot of the slope at* versus
of noise in each realization. Abscissa: Level of correlation of theC, matches up to a constant factor the plot@f at o*
noise,C, (dimensionless Ordinate:o* in units of current for(a), versusC, [Fig. 30)].

C; at o* (dimensionlessfor (b). For 3C, Cox10° at o* in The above results show that the quasistatic assumption
current unit<(spikes/time units (squares and slope ato™ in pq|ds and that in order to clarify the effect of noise correla-
spikes{time units<current units (circles. tion time on the ASR, we need only to compute the dis-

. . . charge rate of the model in response to constant input cur-
tions. Chialvoet al.[8] took advantage of this, and showed rents. Therefore, in the following, we examine how the

that, l_Jnder this cqndltlon, the system acts “k? a static nonEjischarge rate of a simplified version of the FHN varies with
linearity. As the signal changes on a slower time scale tha

RN . ' Mathe noise correlation time, in order to determine the factors
all characteristics times of the neuron, it produces quasistat

variations in the parametét. Thus, the firing rate observed that are essential in obtaining a similar response.
near a given value of the input signal can be estimated from
the input-output function at the corresponding constant value
of A. They determined the input-output function of this static
system by computing the discharge rate of the model in re- In this section, we describe the influence of correlated
sponse to constant current stimulation. Finally, they vali-noise on the response of a simplified FKEBFHN) model. In
dated their approximation by showing numerically that theother words, for each level of noise correlatiGn, we com-
curve of Cy against the noise level could be reproduced, uppute (i) the noise amplitude* that maximizes the slope of

C. Discharge rate of a simplified neuron model
with correlated noise
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the constant current intensity versus mean firing rate curves, A
and (ii) the corresponding maximal slope valsie. Next we
monitor how these two quantities change with the noise cor-
relation time.

The motivating reason for the construction of the SFHN
was the schematic separation of the dynamics of the model
into subthreshold and suprathreshold regimes. The latter rep-
resents the action potential whose shape and duration are 0
little affected by the inputs. Therefore, we assumed that the
response of the model was mainly shaped by the interaction
between its intrinsic subthreshold dynamics and the noise.
As a first approximation, we used the linearized FHN for the B
description of the subthreshold dynamics.

More precisely, the SFHN comprises two variables de-
noted byv’ andw’, and a constant threshold, denotedéy
While v’ is below threshold, the time course of the system is
determined by the linearized FHN:

10

Slope

Slope

LS LN
! : RRg.g. na
dv o & RS U S s |

=a(A)v'—w’+n(t),

&€ d T T T T T T
t 0.00 0.05 0.10 0.15 0.20 0.25

(3.0 o

dw’ | ,
dt v W, C 0.06 .

0.05
where a(A)=—3v*?+2(a+1)v* —a, where v* is the oos \
equilibrium potential for Eq(2.1) for a constant current of x
intensity A. The noisen is determined by Eq2.2). 0 ooy o \

Concerning the threshold, it was necessary to define a 0021 NNy /
level such that if the voltage of the SFHN exceeds its value a0t . v
the model is considered to fire. We took the differemge . o . .
—v*, wherevy is the equilibrium potential at the constant 0 ! 2 3 4
current intensity at which the Hopf bifurcation occurs, as this ’ Level of correlation of the noise
threshold value (see Fig. 1. We calledv,;—v* the thresh-
old of the SFHN, in the sense that it plays the role of the D

threshold in the FHN, although in the latter system the ) }%{%{{ } {H% }

threshold is not precisely defined as a single value. 2
In this way, for each value of the parameterepresent- *

ing the constant current intensity, the subthreshold dynamics 15

of the simplified model closely follow those of the FHN

linearized at the equilibrium point. Furthermore, the thresh- E—I{’PI‘E‘I\;‘H‘,I\

old is adjusted to take into account that increashpwers ol . ‘ ‘ \§

the firing threshold in the FHN. 0 ! 2 3 4
Whenever’ exceeds the thresholé, both variables)’ Level of correlation of the noise

andw’ are reset instantaneously to zero. This event consti- FIG. 5. (&) The slope of the FHN input-output function is plot-

tutes the definition of the spike; the shape of the action poted against the noise amplitude for white noise(squares noise

tential itself is not explicitly included in this model. Follow- With correlation time7=0.1 (circles, and noise with correlation

ing the post-discharge reset, the two variahiésand w’ time 7=;0.0(trlangle$.' (b) The slppe of the SFHN input-output

remain at the origin during an absolute refractory period lastiUnction is plotted against the noise amplitude for white noise

ing 0.4 time units, which is close to the duration of the Spike(squares noise with correlation timer=0.1 (circles, and noise

. . . . . with correlation timer=10.0 (triangles. (c) The o* for the slope
in the FHN driven by nois0.25-0.4 tlm? units and cor- of the FHN input-output functiofsquaresand thes™* for the slope

. . ) Mf the SFHN input-output functiokcircleg are plotted against the

used for thg FHN. At'the end of this period, the two variablesg, | of correlation of the nois€, . (d) The slope of the FHN

evolve again aqcordlng to E(_ﬁ'l)' . input-output function+ standard deviation reached@&t (squares
In the numerical computations of the discharge rate of EQang the slope of the SFHN input-output function reached-at

(3.1), we used exactly the same 8 values of the input amplitcircleg are plotted again<, . All the points represent averages of
tudeA, and the same noise sequences that were used for the realizations of the model lasting 250 time units each, using a

FHN. For the 6 larger values @&, the linearized FHN be- different seed of noise in each realization. Abscissén arbitrary
haves as a focus; i.e., the eigenvalues of Bdl) are com-  current units for(a) and (b); level of correlation of the noiseg,
plex numbers. For the remaining two lower valuesfofthe  (dimensionlessfor (c) and (d). Ordinate: Slope in spikegime
system behaves as a node. The region of focus behavior isits) X (current unitg for (a) and(b); o* in current units foi(c) and
indicated with a dark bar over the abscissa of Fig. 1. Thisslope ato™ in spikesftime units<current unit$ for (d).
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corresponds to a value af(A)>—0.146 421 and to a value Interestingly, such a phenomenon whereby the interplay
of the voltage variable >0.136 489. of noise correlation time and deterministic resonance influ-
The slope of the input-output function versatsfor three  ences the behavior of the system has been reported in the
different levels of noise correlation is shown in Fig. 5. Thecase of a discrete-time dynamical system near a Hopf bifur-
curves of the FHN systerfFig. 5@] and the SFHNFig.  cation in the presence of correlated multiplicative n¢is.
5(b)] display a similar behaviorg*, the noise level that This study shows that the output coherence is optimized for
maximizes the slope, decreases withp toC*, after which  the noise correlation time for which the frequency is as simi-
o* increases again. This phenomenon producklsshaped lar as possible to the deterministic frequency. Nevertheless,
curve in the plot ofe* versusC,. The minimum of the in the conditions of the present simulations, other factors that
curve is the same for both the FHN and the SFHN. In theadd complexity to this simple interpretation must be taken
latter, theU is “flatter” than in the former, i.e., the edges of into account. The two lowest values Afwere in the node
the U have lower ordinatefFig. 5(c)]. The maximum slope regime. Moreover, the lower values &f within the focus
(s*, the slope at*) reaches larger values than in the FHN, produce only a very little resonance effect. The damping
and it decreases moderately ass increased. This trend to factor { of the linear system derived from E@3.1) was
decrease is clearer than in the FHN, where there is a platedietween 0 and 1/2. This condition was satisfied only in the
that extends untiC, =2.0[Fig. 5d)]. case of the three larger valuesAf Thus, roughly speaking,
These simulations show that the performance of theonly the upper half of the signal produced a resonance effect.
SFHN is quite similar to that of the FHN, although the de- In this situation, the changes in the “effective resonance fre-
tails are different. This implies that the properties of the FHNquency” of the system and its relation with the input-output
in the presence of noise can be studied using the SFHN asfalelity are nontrivial. For the above-mentioned three larger
plausible approximation. The behavior of the SFHN can bevalues ofA, the resonance frequency of our model ranges
more easily investigated theoretically because it is a lineafrom 1.6 to 2.25. The more effective noise in the simulations
system as far as the subthreshold activity is concerned. was in the range from\;=20 to A\;=5. Further studies,
including simulations with a systematic change of the param-
IV. DISCUSSION eter of the model that determine the resonance frequency,
. ) . .. l.e., 7, as well as simulations using other neuron models, are
The use of noise with a certain degree of correlation iMyecessary to clarify this point. We will address these issues
proves ASR performance in the sense that a lower noisg, fyture studies.
amplitude is required to optimize the input-output fidelity. | conclusion, we examined the response of the FHN to a
This effect is explained by the quasistatic assumption; i.e.glow subthreshold aperiodic signal in the presence of noise.
noise W|tr_1 a certa_un Ieyel of cor_relauon is more ef_f|C|ent thanywe showed that for each noise correlation, the system dis-
white noise to Illne'arlze the mput—c.)utput.functlon of.the played ASR, in the sense that there was an intermediate
FHN. This result is in contrast with simulations done with apgise amplitude that maximized the input-output covariance
weakly periodically modulated bistable system with aq; the input-output correlation. Then, we investigated the
double-well potential, where the correlation of the noise haghfyence of the noise correlation time on the ASR character-
been shown to impair SRL1]. istics, that is, the optimal noise amplitude® leading to

The question of why a certain level of correlation in the Aogr and the corresponding level of the covaria@ide We
added noise can improve ASR is then translated to why th%bserved that™* first decreased with the noise correlation

correlated noise 1S more effect|v_e to linearize the Input time, before increasing again, whil@; remained almost
output function of the neuron. In this work we provide some ' .

. L . . constant at first, before decaying. These results suggest that,
preliminary insights to the answer of this question. The key.

) .. —7in this system, noise of appropriate correlation time can en-
:ﬁzueltlcl)sl‘ufuihoar: (I)?Z*S)T;r,\l di?]éf:r:?|g\?glsr?)?::%drlrje?lzt%%agﬁﬂ\e/e|¥]ance ASR. At this correlation level the effect of lineariza-

i ) ; . . tion of the input-output function of the FHN is more effec-
noise. This means that an interaction between the noise co

relation time and the intrinsic subthreshold dynamics of the{lve’ and for this reason the required noise levef is

model[14] driven in the focus regime, which is similar for decreased. This increased efficiency in the linearization of

. . the input-output function may be related to resonance phe-
:\:/Egt g?(tjhsl\:/;ﬁésm;‘ythb:s?t nt;((at)b Z‘:’;Sigftﬁgliaahzn\?v?:rgonnomena between the intrinsic subthreshold dynamics of the

9 9 model and the noise, but further studies are needed to test
the system behaves as a focus. In the focus the membra

responds to a transient perturbation with a damped oscillaltﬁ‘—%S hypothesis.

tion of v, and displays the property of resonance, i.e., some
particular frequency contained in the input noise can be more
amplified than others in the outpwt This led us to the
hypothesis that the noise with a valuexgfthat better fits the One of the authorgA.C.) gratefully acknowledges the
resonance frequency of the system should be the more effefinancial support from the Japan Society for the Promotion of
tive to linearize the input-output function, because it can beScience(JSPS, and the hospitality and constant help of the
more amplified due to the resonance effect. Thusgth¢hat  staff and the students of the Division of Biophysical Engi-
maximizes the slope of the constant current intensity versuseering of Osaka University. A.C. also acknowledges the
mean firing rate should be smaller. financial support from PEDECIBAUruguay.
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